第963章 反制技术建议(1 / 2)

卷首语</p>

电磁通信的兴起,让信息安全陷入 “看不见的对抗”—— 从电缆中的窃听信号到空中的截获电波,每一次通信技术的进步,都伴随着反制技术的革新。1972 年前后,伪装信号、电磁屏蔽与频道干扰构成的反制体系,是技术员们应对窃听威胁的智慧结晶。小张的信号模拟、大刘的屏蔽设计、老赵的干扰方案,如同电波中的 “隐形屏障”,在电磁空间里筑起安全防线,也为后续电磁防护技术奠定了实践基础。</p>

1960 年代初,有线通信仍是重要信息传输方式,但电缆窃听风险逐渐显现 —— 部分工厂与科研机构的电缆被第三方非法接入,导致技术数据泄露。当时负责通信维护的技术员老赵,首次意识到 “被动防护” 的局限性:传统的电缆埋地处理,无法阻止专业设备的信号感应窃听,必须研发主动反制手段。</p>

老赵带领团队展开调研,发现窃听设备主要通过感应电缆中的电流信号获取信息,核心弱点是 “只能识别特定频率的信号”。基于这一发现,他提出 “信号混淆” 的初步思路:在电缆中注入低强度的干扰信号,让窃听设备无法分辨真实信息与干扰信号。刚入职的技术员小张,主动承担起干扰信号的频率测试工作。</p>

小张在实验室里搭建模拟环境,将不同频率的干扰信号注入测试电缆,再用窃听设备接收。经过数十次尝试,他发现当干扰信号频率与真实信号频率接近但存在微小差异时,窃听设备的解码成功率会从 80 降至 15 以下。这一发现,为后续伪装信号技术提供了关键数据支撑。</p>

但问题随之而来:干扰信号过强会影响真实信号传输,过弱则无法起到混淆作用。技术员大刘提出 “动态功率调节” 方案,根据电缆传输的真实信号强度,自动调整干扰信号功率,确保两者比例稳定。他们在车间的电缆线路上进行试点,成功在不影响正常通信的前提下,降低了窃听风险。</p>

这次早期实践,虽未形成完整方案,却让团队明确了 “针对性干扰” 的核心逻辑 —— 围绕敌方窃听设备的频率特性设计反制手段,也为 1972 年结合苏联电缆窃听事件优化反制思路埋下伏笔。</p>

1965 年,无线通信开始普及,空中电波的截获成为新威胁。某科研单位的无线指令被第三方截获,导致实验数据泄露。老赵团队接到任务后,意识到反制技术需从 “有线防护” 转向 “无线 + 有线” 的双重防护,伪装信号发射技术的研发被提上日程。</p>

小张负责伪装信号的模拟设计 —— 他分析真实无线通信的信号特征,包括频率、调制方式、信号间隔等,再通过信号发生器生成与真实信号高度相似的伪装信号。例如,真实指令信号的频率是 400hz、调制方式为调频,伪装信号就采用 3998-4002hz 的频率范围,同样使用调频方式,让截获方难以区分。</p>

大刘则专注于伪装信号的发射时机控制。他设计了 “随机间隙发射” 装置:真实信号发射前 10 秒,先发射 3-5 组伪装信号;真实信号发射期间,每隔 2 秒插入 1 组伪装信号;真实信号结束后,再持续发射伪装信号 30 秒。这种 “前后覆盖 + 中间穿插” 的模式,大幅增加了截获方的信号筛选难度。</p>

团队在野外进行测试:小张操作信号发生器发射真实指令与伪装信号,大刘用截获设备模拟敌方接收。结果显示,截获设备共收到 28 组信号,仅 3 组为真实指令,其余均为伪装信号,且真实指令被伪装信号包裹,难以单独提取。这次测试,验证了伪装信号发射技术的有效性。</p>

但此时的伪装信号仍存在 “频率固定” 的缺陷 —— 若敌方掌握伪装信号的频率范围,仍可通过滤波技术筛选。老赵提出 “频率跳变” 改进方向,为 1972 年反制方案的优化留下了技术空间。</p>

1968 年,国际上出现苏联电缆窃听事件的技术报道(非政治层面的技术分析),事件中敌方通过在电缆接头处安装微型窃听器,直接获取电缆传输的原始信号,传统的信号混淆手段难以应对。老赵团队从这一事件中得到启发,意识到 “物理防护 + 信号反制” 结合的重要性。</p>

老赵组织团队分析事件中的窃听手法:微型窃听器体积仅指甲大小,可嵌入电缆接头的绝缘层,通过感应电流获取信号,且不易被常规检测发现。针对这一特点,他提出 “电缆接头电磁屏蔽” 方案,由大刘负责具体设计。</p>

大刘查阅大量电磁屏蔽资料,最终确定用 “双层金属网 + 导电胶” 构建屏蔽结构:内层采用铜制金属网包裹接头,外层用铝制金属壳覆盖,两层之间涂抹导电胶,确保电磁密封。这种结构可将外部电磁干扰隔绝 90 以上,同时阻止接头处的信号外泄。</p>

本小章还未完,请点击下一页继续阅读后面精彩内容!</p>