notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision.
2.4.2errorinplanetarylongitudes
sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshita&&nakai(1996)wherethedifferenceisestimatedas~60°.
这章没有结束,请点击下一页继续阅读!
3numericalresults–i.glanceattherawdata
inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.
3.1generaldescriptionofthestabilityofplanetaryorbits
first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.
verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentum.(a)theinitialpartofn+1(t=0to0.0547×109yr).(b)thefinalpartofn+1(t=4.9339×108to4.9886×109yr).(c)theinitialpartofn?1(t=0to?0.0547×109yr).(d)thefinalpartofn?1(t=?3.9180×109to?3.9727×109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).
thevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationn+1isshowninfig.4.asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforvenus,earthandmars.theelementsofmercury,especiallyitseccentricity,seemtochangetoasignificantextent.thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.thisresultappearstobeinsomeagreementwithlaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofmercuryonatime-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofmercury.wewillmentionbrieflythelong-termorbitalevolutionofmercurylaterinsection4usinglow-passfilteredorbitalelements.
这章没有结束,请点击下一页继续阅读!
theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsosection5).
3.2time–frequencymaps
althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.berger1988).
togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastfouriertransformations(ffts)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorlaskar's(1990,1993)frequencyanalysis.
dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelenh.thelenhofeachdatasegmentshouldbeamultipleof2inordertoapplythefft.
eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+t,thenextdatasegmentrangesfromti+δt≤ti+δt+t,whereδt?t.wecontinuethisdivisionuntilwereachacertainnumbernbywhichtn+treachesthetotalintegrationlenh.
weapplyanffttoeachofthedatafragments,andobtainnfrequencydiagrams.
ineachfrequencydiagramobtainedabove,thestrenhofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.
weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.
wehaveadoptedanfftbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofgbytes).
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+2integration.thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
4.2long-termexchangeoforbitalenergyandangularmomentum
wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.
infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationofthemercury.however,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.
4.4long-termcouplingofseveralneighbouringplanetpairs
letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfiltereddelaunayelements.figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminn+1andn?2integrations.wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.inparticular,venusandearthmakeatypicalpair.inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatmarsshows'itivecorrelationintheangularmomentumvariationtothevenus–earthsystem.mercuryexhibitscertainnegativecorrelationsintheangularmomentumversusthevenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.
本小章还未完,请点击下一页继续阅读后面精彩内容!